Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 6 van 10 gevonden artikelen
 
 
  Prediction of Ubiquitin Proteins using Artificial Neural Networks, Hidden Markov Model and Support Vector Machines
 
 
Titel: Prediction of Ubiquitin Proteins using Artificial Neural Networks, Hidden Markov Model and Support Vector Machines
Auteur: Jaiswal, Kunal
Verschenen in: In silico biology
Paginering: Jaargang 7 (2008) nr. 6 pagina's 559-568
Jaar: 2008-03-25
Inhoud: Ubiquitin functions to regulate protein turnover in a cell by closely regulating the degradation of specific proteins. Such a regulatory role is very important, and thus I have analyzed the proteins that are ubiquitin-like, using an artificial neural network, support vector machines and a hidden Markov model (HMM). The methods were trained and tested on a set of 373 ubiquitin proteins and 373 non-ubiquitin proteins, obtained from Entrez protein database. The artificial neural network and support vector machine are trained and tested using both the physicochemical properties and PSSM matrices generated from PSI-BLAST, while in the HMM based method direct sequences are used for training-testing procedures. Further, the performance measures of the methods are calculated for test sequences, i.e. accuracy, specificity, sensitivity and Matthew's correlation coefficients of the methods are calculated. The highest accuracy of 90.2%, specificity of 87.04% and sensitivity of 94.08% was achieved using the support vector machine model with PSSM matrices. While accuracies of 86.82%, 83.37%, 80.18% and 72.11% were obtained for the support vector machine with physicochemical properties, neural network with PSSM matrices, neural networks with physicochemical properties, and hidden Markov model, respectively. As the accuracy for SVM model is better both using physicochemical properties and the PSSM matrices, it is concluded that kernel methods such as SVM outperforms neural networks and hidden Markov models.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 6 van 10 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland