Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
   volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 1 van 11 gevonden artikelen
 
 
  Coding Potential Prediction in Wolbachia Using Artificial Neural Networks
 
 
Titel: Coding Potential Prediction in Wolbachia Using Artificial Neural Networks
Auteur: Lambros, Skarlas
Panos, Ioannidis
Spiridon, Likothanassis
Verschenen in: In silico biology
Paginering: Jaargang 7 (2007) nr. 1 pagina's 105-113
Jaar: 2007-05-21
Inhoud: Ab initio coding potential prediction in a bacterial genome is an important step in determining an organism's transcriptional regulatory function. Extensive studies of genes structure have been carried out in a few species such as. Escherichia coli, fewer resources exist in newly sequenced genomes like Wolbachia. A model of gene prediction trained on one species may not reflect the properties of other, distantly related prokaryotic organisms. These issues were encountered in the course of predicting genes in the genome of Wolbachia, very important gramnegative bacteria that form intracellular inherited infections in many invertebrates. We describe a coding potential predictor based on artificial neural networks and we compare its performance by using different architectures, learning algorithms and parameters. We rely on a dataset of positive samples constructed from coding sequences and on a negative dataset consisted of all the intergenic regions that were not located between the genes of an operon. Both datasets, positive and negative, were output as fasta formatted files and were used for neural network training. The fast, adaptive, batch learning algorithm Resilient propagation, exhibits the best overall performance on a 64input-10hidden-1output nodes multi-layer perceptron neural network.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 1 van 11 gevonden artikelen
 
   volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland