Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 8 van 9 gevonden artikelen
  Scalable Clustering for Mining Local-Correlated Clusters in High Dimensions and Large Datasets
Titel: Scalable Clustering for Mining Local-Correlated Clusters in High Dimensions and Large Datasets
Auteur: Lu, Kun-Che
Yang, Don-Lin
Verschenen in: Fundamenta informaticae
Paginering: Jaargang 98 (2010) nr. 1 pagina's 15-32
Jaar: 2010-03-15
Inhoud: Clustering is useful for mining the underlying structure of a dataset in order to support decision making since target or high-risk groups can be identified. However, for high dimensional datasets, the result of traditional clustering methods can be meaningless as clusters may only be depicted with respect to a small part of features. Taking customer datasets as an example, certain customers may correlate with their salary and education, and the others may correlate with their job and house location. If one uses all the features of a customer for clustering, these local-correlated clusters may not be revealed. In addition, processing high dimensions and large datasets is a challenging problem in decision making. Searching all the combinations of every feature with every record to extract local-correlated clusters is infeasible, which is in exponential scale in terms of data dimensionality and cardinality. In this paper, we propose a scalable 2-Leveled Approximated Hyper-Image-based Clustering framework, referred as 2L-HIC-A, for mining local-correlated clusters, where each level clustering process requires only one scan of the original dataset. Moreover, the data-processing time of 2L-HIC-A can be independent of the input data size. In 2L-HIC-A, various well-developed image processing techniques can be exploited for mining clusters. In stead of proposing a new clustering algorithm, our framework can accommodate other clustering methods for mining local-corrected clusters, and to shed new light on the existing clustering techniques.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften

                             Details van artikel 8 van 9 gevonden artikelen
<< vorige    volgende >>
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland