Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 11 van 12 gevonden artikelen
 
 
  Semi-GAPS: A Semi-supervised Clustering Method Using Point Symmetry
 
 
Titel: Semi-GAPS: A Semi-supervised Clustering Method Using Point Symmetry
Auteur: Saha, Sriparna
Bandyopadhyay, Sanghamitra
Verschenen in: Fundamenta informaticae
Paginering: Jaargang 96 (2009) nr. 1-2 pagina's 195-209
Jaar: 2009-12-07
Inhoud: In this paper, an evolutionary technique for the semi-supervised clustering is proposed. The proposed technique uses a point symmetry based distance measure. Semi-supervised classification uses aspects of both unsupervised and supervised learning to improve upon the performance of traditional classification methods. In this paper the existing point symmetry based genetic clustering technique, GAPS-clustering, is extended in two different ways to handle the semi-supervised classi- fication problem. The proposed semi-GAPS clustering algorithmis able to detect any type of clusters irrespective of shape, size and convexity as long as they possess the point symmetry property. Kdtree based nearest neighbor search is used to reduce the complexity of finding the closest symmetric point. Adaptive mutation and crossover probabilities are used. Experimental results demonstrate practical performance benefits of the methodology in detecting classes having symmetrical shapes in case of semi-supervised clustering.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 11 van 12 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland