Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 4 van 6 gevonden artikelen
 
 
  Incidence Calculus on Łukasiewicz's Three-valued Logic
 
 
Titel: Incidence Calculus on Łukasiewicz's Three-valued Logic
Auteur: Guilin Qi
Peter Milligan
Paul Sage
Verschenen in: Fundamenta informaticae
Paginering: Jaargang 68 (2005) nr. 4 pagina's 357-378
Jaar: 2005-09-16
Inhoud: Incidence calculus is a probabilistic logic which possesses both numerical and symbolic approaches. However, Liu in [5] pointed out that the original incidence calculus had some drawbacks and she established a generalized incidence calculus theory (GICT) based on Łukasiewicz's three-valued logic to improve it. In a GICT, an incidence function is defined to relate each proposition φ in the axioms of the theory to a set of possible worlds in which φ has truth value true. But the incidence function only represents those absolute true states of propositions, so it can not deal with the uncertain states. In this paper, we use two incidence functions i_* and i^* to relate the axioms to the sets of possible worlds. For an axiom φ, i_*(φ) is to be thought of as the set of possible worlds in which φ has truth value true, while i^*(φ) is the set of possible worlds in which φ is true or undeterminable. Since i^* can represent the undeterminable state, our newly defined theory is more efficient to handle vague information than GICT.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 4 van 6 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland