Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 2 van 8 gevonden artikelen
 
 
  An ?-Power of a Finitary Language Which is a Borel Set of Infinite Rank
 
 
Titel: An ?-Power of a Finitary Language Which is a Borel Set of Infinite Rank
Auteur: Olivier Finkel
Verschenen in: Fundamenta informaticae
Paginering: Jaargang 62 (2004) nr. 3-4 pagina's 333-342
Jaar: 2004-11-30
Inhoud: ω-powers of finitary languages are ω-languages in the form Vω, where V is a finitary language over a finite alphabet Sigma. Since the set Σω of infinite words over Σ can be equipped with the usual Cantor topology, the question of the topological complexity of ω-powers naturally arises and has been raised by Niwinski [13], by Simonnet [15], and by Staiger [18]. It has been proved in [14] that for each integer n≥1, there exist some ω-powers of context free languages which are Πn0-complete Borel sets, and in [5] that there exists a context free language L such that Lω is analytic but not Borel. But the question was still open whether there exists a finitary language V such that Vω is a Borel set of infinite rank. We answer this question in this paper, giving an example of a finitary language whose ω-power is Borel of infinite rank.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 2 van 8 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland