Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 11 van 12 gevonden artikelen
 
 
  Solving the job shop scheduling problem with operators by depth-first heuristic search enhanced with global pruning rules
 
 
Titel: Solving the job shop scheduling problem with operators by depth-first heuristic search enhanced with global pruning rules
Auteur: Mencía, Carlos
Sierra, María R.
Salido, Miguel A.
Escamilla, Joan
Varela, Ramiro
Verschenen in: AI communications
Paginering: Jaargang 28 (2014) nr. 2 pagina's 365-381
Jaar: 2014-09-18
Inhoud: The job shop scheduling problem with an additional resource type has been recently proposed to model the situation where each operation in a job shop has to be assisted by one of a limited set of human operators. We confront this problem with the objective of minimizing the total flow time, which makes the problem more interesting from a practical point of view and harder to solve than the version with makespan minimization. To solve this problem we propose an enhanced dept-first search algorithm. This algorithm exploits a schedule generation schema termed OG&T, two admissible heuristics and some powerful pruning rules. In order to diversify the search, we also consider a variant of this algorithm with restarts. We have conducted an experimental study across several benchmarks. The results of this study show that the global pruning rules are really effective and that the proposed algorithms are quite competent for solving this problem.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 11 van 12 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland