Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 5 van 16 gevonden artikelen
 
 
  A Multinomial Hidden Markov Model and its training by a combined iterative procedure
 
 
Titel: A Multinomial Hidden Markov Model and its training by a combined iterative procedure
Auteur: Cidota, Marina A.
Dumitrescu, Monica
Verschenen in: AI communications
Paginering: Jaargang 27 (2014) nr. 2 pagina's 143-155
Jaar: 2014-04-04
Inhoud: The paper proposes a new extension of Hidden Markov Models (HMM) for communication systems by allowing the Markovian transitions between the channel's states to be influenced by some external “catalyzers” (e.g. environmental or experimental conditions). The stochastic influence of the catalyzers is expressed by multinomial link functions. We introduce a combined iterative training procedure, with the Baum–Welch algorithm as a framework, including some nested algorithms such as the Newton–Raphson and the Expectation–Maximization (EM) algorithms. The monotony of the log-likelihood function associated with our procedure is proven. A simulation study is provided in order to prove the good performances of the proposed combined iterative training procedure. We consider that the Multinomial HMM will be an important and useful extension of HMM in bioinformatics and biostatistics, due to the possible applications in modeling the “hidden” ion channels whose states could be influenced by external factors.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 5 van 16 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland