Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
   volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 1 van 16 gevonden artikelen
 
 
  An empirical study of learning and forgetting constraints
 
 
Titel: An empirical study of learning and forgetting constraints
Auteur: Gent, Ian P.
Miguel, Ian
Moore, Neil C.A.
Verschenen in: AI communications
Paginering: Jaargang 25 (2012) nr. 2 pagina's 191-208
Jaar: 2012-07-24
Inhoud: Conflict-driven constraint learning provides big gains on many CSP and SAT problems. However, time and space costs to propagate the learned constraints can grow very quickly, so constraints are often discarded (forgotten) to reduce overhead. We conduct a major empirical investigation into the overheads introduced by unbounded constraint learning in CSP. To the best of our knowledge, this is the first published study in either CSP or SAT. We obtain three significant results. The first is that a small percentage of learnt constraints do most propagation. While this is conventional wisdom, it has not previously been the subject of empirical study. Second, we show that even constraints that do no effective propagation can incur significant time overheads. Finally, by implementing forgetting, we confirm that it can significantly improve the performance of modern learning CSP solvers, contradicting some previous research.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 1 van 16 gevonden artikelen
 
   volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland