Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
   volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 1 van 10 gevonden artikelen
 
 
  Applying probabilistic latent semantic analysis to multi-criteria recommender system
 
 
Titel: Applying probabilistic latent semantic analysis to multi-criteria recommender system
Auteur: Zhang, Yin
Zhuang, Yueting
Wu, Jiangqin
Zhang, Liang
Verschenen in: AI communications
Paginering: Jaargang 22 (2009) nr. 2 pagina's 97-107
Jaar: 2009-06-15
Inhoud: Nowadays some recommender system researchers have already been engaging multi-criteria that model possible attributes of the item to generate the improved recommendations. However, the statistical machine learning methods successful in the single-rating recommender system have not been investigated in the context of multi-criteria ratings. In this paper, we propose two types of multi-criteria probabilistic latent semantic analysis algorithms extended from the single-rating version. First, the mixture of multi-variate Gaussian distribution is assumed to be the underlying distribution of multi-criteria ratings of each user. Second, we further assume the mixture of the linear Gaussian regression model as the underlying distribution of multi-criteria ratings of each user, inspired by the Bayesian network and linear regression. The experiment results on the Yahoo!Movies ratings data set show that the full multi-variate Gaussian model and the linear Gaussian regression model achieve a stable performance gain over other tested methods.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 1 van 10 gevonden artikelen
 
   volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland