Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 7 van 16 gevonden artikelen
 
 
  LRBNN: A Lazy Radial Basis Neural Network model
 
 
Titel: LRBNN: A Lazy Radial Basis Neural Network model
Auteur: Valls, José M.
Galván, Inés M.
Isasi, Pedro
Verschenen in: AI communications
Paginering: Jaargang 20 (2007) nr. 2 pagina's 71-86
Jaar: 2007-07-13
Inhoud: In the domain of inductive learning from examples, usually, training data are not evenly distributed in the input space. This makes global and eager methods, like Neural Networks, not very accurate in those cases. On the other hand, lazy methods have the problem of how to select the best examples for each test pattern. A bad selection of the training patterns would lead to even worse results. In this work, we present a way of performing a trade-off between local and non-local methods using a lazy strategy. On one hand, a Radial Basis Neural Network is used as learning algorithm; on the other hand, a selection of training patterns is performed for each query in a local way. The selection of patterns is based on the analysis of the query neighborhood, to forecast the size and elements of the best training set for that query. Moreover, the RBNN initialization algorithm has been modified in a deterministic way to eliminate any initial condition influence. The method has been validated in three domains, one artificial and two time series problems, and compared with traditional lazy methods.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 7 van 16 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland