Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
   volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 1 van 16 gevonden artikelen
 
 
  A heuristic for learning decision trees and pruning them into classification rules
 
 
Titel: A heuristic for learning decision trees and pruning them into classification rules
Auteur: José Ranilla
Oscar Luaces
Antonio Bahamonde
Verschenen in: AI communications
Paginering: Jaargang 16 (2003) nr. 2 pagina's 71-87
Jaar: 2003-06-03
Inhoud: Let us consider a set of training examples described by continuous or symbolic attributes with categorical classes. In this paper we present a measure of the potential quality of a region of the attribute space to be represented as a rule condition to classify unseen cases. The aim is to take into account the distribution of the classes of the examples. The resulting measure, called impurity level, is inspired by a similar measure used in the instance-based algorithm IB3 for selecting suitable paradigmatic exemplars that will classify, in a nearest-neighbor context, future cases. The features of the impurity level are illustrated using a version of Quinlan's well-known C4.5 where the information-based heuristics are replaced by our measure. The experiments carried out to test the proposals indicate a very high accuracy reached with sets of classification rules as small as those found by RIPPER.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 1 van 16 gevonden artikelen
 
   volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland