Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 5 van 12 gevonden artikelen
 
 
  Extracting symbolic rules from trained neural network ensembles
 
 
Titel: Extracting symbolic rules from trained neural network ensembles
Auteur: Zhi-Hua Zhou
Yuan Jiang
Shi-Fu Chen
Verschenen in: AI communications
Paginering: Jaargang 16 (2003) nr. 1 pagina's 3-15
Jaar: 2003-04-21
Inhoud: Neural network ensemble can significantly improve the generalization ability of neural network based systems. However, its comprehensibility is even worse than that of a single neural network because it comprises a collection of individual neural networks. In this paper, an approach named REFNE is proposed to improve the comprehensibility of trained neural network ensembles that perform classification tasks. REFNE utilizes the trained ensembles to generate instances and then extracts symbolic rules from those instances. It gracefully breaks the ties made by individual neural networks in prediction. It also employs specific discretization scheme, rule form, and fidelity evaluation mechanism. Experiments show that with different configurations, REFNE can extract rules with good fidelity that well explain the function of trained neural network ensembles, or rules with strong generalization ability that are even better than the trained neural network ensembles in prediction.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 5 van 12 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland