Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige   
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 4 van 4 gevonden artikelen
 
 
  Sets in Coq, Coq in Sets
 
 
Titel: Sets in Coq, Coq in Sets
Auteur: Bruno Barras
Verschenen in: Journal of formalized reasoning
Paginering: Jaargang 3 (2010) nr. 1 pagina's 29-48
Jaar: 2010
Inhoud: This work is about formalizing models of various type theories of the Calculus of Constructions family. Here we focus on set theoretical models. The long-term goal is to build a formal set theoretical model of the Calculus of Inductive Constructions, so we can be sure that Coq is consistent with the language used by most mathematicians.One aspect of this work is to axiomatize several set theories: ZF possibly with inaccessible cardinals, and HF, the theory of hereditarily finite sets. On top of these theories we have developped a piece of the usual set theoretical construction of functions, ordinals and fixpoint theory. We then proved sound several models of the Calculus of Constructions, its extension with an infinite hierarchy of universes, and its extension with the inductive type of natural numbers where recursion follows the type-based termination approach.The other aspect is to try and discharge (most of) these assumptions. The goal here is rather to compare the theoretical strengths of all these formalisms. As already noticed by Werner, the replacement axiom of ZF in its general form seems to require a type-theoretical axiom of choice (TTAC).
Uitgever: CIB - University of Bologna (provided by DOAJ)
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 4 van 4 gevonden artikelen
 
<< vorige   
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland