Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 6 of 9 found articles
 
 
  Face Recognition Using Particle Swarm Optimization-Based Selected Features
 
 
Title: Face Recognition Using Particle Swarm Optimization-Based Selected Features
Author: Rabab M. Ramadan
Rehab F. Abdel - Kader
Appeared in: International journal of signal processing, image processing and pattern recognition
Paging: Volume 2 (2009) nr. 2 pages 51-66
Year: 2009
Contents: Feature selection (FS) is a global optimization problem in machine learning, which reduces the number of features, removes irrelevant, noisy and redundant data, and results in acceptable recognition accuracy. It is the most important step that affects the performance of a pattern recognition system. This paper presents a novel feature selection algorithm based on particle swarm optimization (PSO). PSO is a computational paradigm based on the idea of collaborative behavior inspired by the social behavior of bird flocking or fish schooling. The algorithm is applied to coefficients extracted by two feature extraction techniques: the discrete cosine transforms (DCT) and the discrete wavelet transform (DWT). The proposedPSO-based feature selection algorithm is utilized to search the feature space for the optimal feature subset where features are carefully selected according to a well defined discrimination criterion. Evolution is driven by a fitness function defined in terms of maximizing the class separation (scatter index). The classifier performance and the length of selected feature vector are considered for performance evaluation using the ORL facedatabase. Experimental results show that the PSO-based feature selection algorithm was found to generate excellent recognition results with the minimal set of selected features.
Publisher: SERSC (provided by DOAJ)
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 6 of 9 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands