Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 2 van 15 gevonden artikelen
 
 
  A Multi -Perspective Evaluation of MA and GA for Collaborative Filtering Recommender System
 
 
Titel: A Multi -Perspective Evaluation of MA and GA for Collaborative Filtering Recommender System
Auteur: Hema Banati
Shikha Mehta
Verschenen in: International journal of computer science and information technology
Paginering: Jaargang 2 (2010) nr. 5 pagina's 103-122
Jaar: 2010
Inhoud: The rising popularity of evolutionary algorithms to solve complex problems has inspired researchers toexplore their utility in recommender systems. Recommender systems are intelligent web applications whichgenerate recommendations keeping in view the user’s stated and unstated requirements. Evolutionaryapproaches like Genetic and memetic algorithms have been considered as one of the most successfulapproaches for combinatorial optimization. Memetic Algorithms (MAs) are enhanced genetic algorithmswhich incorporate local search in the evolutionary scheme. Local Search process on each solution afterevery generation helps in improving the convergence time of MA. This paper presents multi-perspectivecomparative evaluation of memetic and genetic evolutionary algorithms for model based collaborativefiltering recommender system. Experimental study was conducted on MovieLens dataset to investigate thedecision support and statistical efficiency of Memetic and genetic algorithms. Algorithms were analyzedfrom different perspectives like variation in number of clusters, effect of increasing the number of users,varying number of recommendations and using either one or more than one cluster for computing ratingsof the unrated items. Results obtained demonstrated that from all perspectives memetic collaborativefiltering algorithm has better predictive accuracy as compared genetic collaborative filtering algorithm.
Uitgever: Academy & Industry Research Collaboration Center (AIRCC) (provided by DOAJ)
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 2 van 15 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland
Toegankelijkheidsverklaring