Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 2 van 13 gevonden artikelen
 
 
  A note on invariant measures
 
 
Titel: A note on invariant measures
Auteur: Piotr Niemiec
Verschenen in: Opuscula mathematica
Paginering: Jaargang 31 (2011) nr. 3 pagina's 425-431
Jaar: 2011
Inhoud: The aim of the paper is to show that if $\FFf$ is a family of continuous transformations of a nonempty compact Hausdorff space $\Omega$, then there is no $\FFf$-invariant probabilistic Borel measures on $\Omega$ iff there are $\varphi_1,\ldots,\varphi_p \in \FFf$ (for some $p \geqsl 2$) and a continuous function $u\dd \Omega^p \to \RRR$ such that $\sum_{\sigma \in S_p} u(x_{\sigma(1)},\ldots,x_{\sigma(p)}) = 0$ and $\liminf_{n\to\infty} \frac1n \sum_{k=0}^{n-1} (u \circ \Phi^k)(x_1,\ldots,x_p) \geqsl 1$ for each $x_1,\ldots,x_p \in \Omega$, where $\Phi\dd \Omega^p \ni (x_1,\ldots,x_p) \mapsto (\varphi_1(x_1),\ldots,\varphi_p(x_p)) \in \Omega^p$ and $\Phi^k$ is the $k$-th iterate of $\Phi$. A modified version of this result in case the family $\FFf$ generates an equicontinuous semigroup is proved.
Uitgever: AGH University of Science and Technology (provided by DOAJ)
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 2 van 13 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland