On the global attractivity and the periodic character of a recursive sequence
Titel:
On the global attractivity and the periodic character of a recursive sequence
Auteur:
E.M. Elsayed
Verschenen in:
Opuscula mathematica
Paginering:
Jaargang 30 (2010) nr. 4 pagina's 431-446
Jaar:
2010
Inhoud:
In this paper we investigate the global convergence result, boundedness, and periodicity of solutions of the recursive sequence $$x_{n+1} = ax_n + \frac{bx_{n-1}+cx_{n+2}}{dx_{n-1}+ex_{n+2}}, \quad n=0,1,\ldots,$$ where the parameters $a,$ $b,$ $c,$ $d$ and $e$ are positive real numbers and the initial conditions $x_{-2},$ $x_{-1},$ and $x_0$ are positive real numbers.
Uitgever:
AGH University of Science and Technology (provided by DOAJ)