Digital Library
Close Browse articles from a journal
 
   next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 1 of 12 found articles
 
 
  Asymptotic behaviour and approximation of eigenvalues for unbounded block Jacobi matrices
 
 
Title: Asymptotic behaviour and approximation of eigenvalues for unbounded block Jacobi matrices
Author: Maria Malejki
Appeared in: Opuscula mathematica
Paging: Volume 30 (2010) nr. 3 pages 311-330
Year: 2010
Contents: The research included in the paper concerns a class of symmetric block Jacobi matrices. The problem of the approximation of eigenvalues for a class of a self-adjoint unbounded operators is considered. We estimate the joint error of approximation for the eigenvalues, numbered from 1 to $N$, for a Jacobi matrix $J$ by the eigenvalues of the finite submatrix $J_n$ of order $pn \times pn$, where $N = \max \{k \in N : k \leq rpn\}$ and $r \in (0,1)$ is suitably chosen. We apply this result to obtain the asymptotics of the eigenvalues of $J$ in the case $p=3$.
Publisher: AGH University of Science and Technology (provided by DOAJ)
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 1 of 12 found articles
 
   next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands