Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 7 of 9 found articles
 
 
  On chromatic equivalence of a pair of k_4-homeomorphs
 
 
Title: On chromatic equivalence of a pair of k_4-homeomorphs
Author: S. Catada-Ghimire
H. Roslan
Y.H. Peng
Appeared in: Opuscula mathematica
Paging: Volume 30 (2010) nr. 2 pages 123-131
Year: 2010
Contents: Let $P(G, \lambda)$ be the chromatic polynomial of a graph $G$. Two graphs $G$ and $H$ are said to be chromatically euqivalent, denoted $G \sim H$, if $P(G, \lambda) = P(H, \lambda)$. We write $[G] = {H| H \sim G}$. If $[G] = \{G\}$, then $G$ is said to be chromatically unique. In this paper, we discuss a chromatically equivalent pair of graphs in one family of $K_4$-homeomorphs, $K_4(1, 2, 8, d, e, f)$. The obtained result can be extended in the study of chromatic equivalence classes of $K_4(1, 2, 8, d, e, f)$ and chromatic uniqueness of $K_4$-homeomorphs with girth $11$.
Publisher: AGH University of Science and Technology (provided by DOAJ)
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 7 of 9 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands