Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 5 of 8 found articles
 
 
  Porous sets for mutually nearest points in Banach spaces
 
 
Title: Porous sets for mutually nearest points in Banach spaces
Author: Chong Li
Józef Myjak
Appeared in: Opuscula mathematica
Paging: Volume 28 (2008) nr. 1 pages 73-82
Year: 2008
Contents: Let $B(X)$ denote the family of all nonempty closed bounded subsets of a real Banach space $X$, endowed with the Hausdorff metric. For $E, F \in B(X)$ we set $\lambda _{EF} = inf \{\|z - x\| : x \in E, z \in F \}$. Let $D$ denote the closure (under the maximum distance) of the set of all $(E, F) \in B(X) \times B(X)$ such that $\lambda {EF} > 0$. It is proved that the set of all $(E, F) \in D $ for which the minimization problem $min_{x \in E, z\in F}\|x - z\|$ fails to be well posed in a $\sigma$-porous subset of $D$.
Publisher: AGH University of Science and Technology (provided by DOAJ)
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 5 of 8 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands