Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 3 van 8 gevonden artikelen
 
 
  Monotone iterative methods for infinite systems of reaction-diffusion-convection equations with functional dependence
 
 
Titel: Monotone iterative methods for infinite systems of reaction-diffusion-convection equations with functional dependence
Auteur: Stanisław Brzychczy
Verschenen in: Opuscula mathematica
Paginering: Jaargang 25 (2005) nr. 1 pagina's 29-99
Jaar: 2005
Inhoud: We consider the Fourier first initial-boundary value problem for an infinite system of semilinear parabolic differential-functional equations of reaction-diffusion-convection type of the form \begin{equation*} F^i[z^i](t, x)=f^i(t, x, z), i \in S, \end{equation*} where \begin{equation*} F^i:=D_t-\mathcal{L}^i, \mathcal{L}^i:=\sum_{j,k=1}^m a_{jk}^i(t,x)D^2_{x_jx_k}+\sum_{j=1}^m b_j^i(t, x)D_{x_j} \end{equation*} in a bounded cylindrical domain $(0, T] \times G:=D \subset \mathbb{R}^{m+1}$. The right-hand sides of the system are Volterra type functionals of the unknown function $z$. In the paper, we give methods of the construction of the monotone iterative sequences converging to the unique classical solution of the problem considered in partially ordered Banach spaces with various convergence rates of iterations. We also give remarks on monotone iterative methods in connection with numerical methods, remarks on methods for the construction of lower and upper solutions and remarks concerning the possibility of extending these methods to more general parabolic equations. All monotone iterative methods are based on differential inequalities and, in this paper, we use the theorem on weak partial differential-functional inequalities for infinite systems of parabolic equations, the comparison theorem and the maximum principle. A part of the paper is based on the results of our previous papers. These results generalize the results obtained by several authors in numerous papers for finite systems of semilinear parabolic differential equations to encompass the case of infinite systems of semilinear parabolic differential-functional equations. The monotone iterative schemes can be used for the computation of numerical solutions.
Uitgever: AGH University of Science and Technology (provided by DOAJ)
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 3 van 8 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland