Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 4 van 26 gevonden artikelen
 
 
  Artificial Neural Network Modelling of Common Lambsquarters Biomass Production Response to Corn Population and Planting Pattern
 
 
Titel: Artificial Neural Network Modelling of Common Lambsquarters Biomass Production Response to Corn Population and Planting Pattern
Auteur: S.F. Saberali
S.A. Sadat Noori
J. Khazaei
A. Hejazi
Verschenen in: Pakistan journal of biological sciences
Paginering: Jaargang 10 (2007) nr. 2 pagina's 326-334
Jaar: 2007
Inhoud: This study shows the ability of Artificial Neural Network (ANN) technology to be used for the prediction of the correlation between common lambsquarters (Chenopodium album L.) population, corn (Zea mays L.) population and planting pattern in different days after planting (as inputs) with common lambsquarters biomass production (as output). The number of patterns used in this study was 60 which were randomly divided into 45 and 15 data sets for training and testing the neural network, respectively. The results showed that a very good performance of the neural network is achieved. Some explanation of the predicted results is given. The multi layer perceptrons with training algorithm of backpropagation (BP) was the best one for creating nonlinear mapping between input and output parameters. The mean training of root mean square error (RMSE) was equal to 0.0156. ANN model predicted the common lambsquarters biomass with maximum RMSE, t-value, average prediction error and correlation coefficient of 0.0091, 0.985, 2.6% and 0.989, respectively. The ANN model, predicted common lambsquarters biomass within ± 5% of the measured biomass for 59.8% of the samples indicates that the ANN can potentially be used to estimate plant biomass. Adjusting ANN parameters such as learning rate, momentum, number of patterns and number of hidden nodes/layers affected the accuracy of biomass production predictions.
Uitgever: Asian Network for Scientific Information (provided by DOAJ)
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 4 van 26 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland