Digital Library
Close Browse articles from a journal
 
   next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 1 of 7 found articles
 
 
  Aggregate structure and stability linked to carbon dynamics in a south Chilean Andisol
 
 
Title: Aggregate structure and stability linked to carbon dynamics in a south Chilean Andisol
Author: D. Huygens
P. Boeckx
O. Van Cleemput
R Godoy
C. Oyarzún
Appeared in: Biogeosciences discussions
Paging: Volume 2 (2005) nr. 1 pages 203-238
Year: 2005
Contents: The extreme vulnerability of soil organic carbon to climate and land use change emphasizes the need for further research in different terrestrial ecosystems. We have studied the aggregate stability and carbon dynamics in a chronosequence of three different land uses in a south Chilean Andisols: a second growth Nothofagus obliqua forest (SGFOR), a grassland (GRASS) and a Pinus radiata plantation (PINUS). The aim of this study was to investigate the role of Al as soil organic matter stabilizing agent in this Andisol. In a case study, we linked differences in carbon dynamics between the three land use treatments to physical protection and recalcitrance of the soil organic matter (SOM). In this study, C aggregate stability and dynamics were studied using size and density fractionation experiments of the SOM, δ13C and total carbon analysis of the different SOM fractions, and mineralization measurements. The results showed that electrostatic attractions between and among Al-oxides and clay minerals are mainly responsible for the stabilization of soil aggregates and the physical protection of the enclosed soil organic carbon. Whole soil C mineralization rate constants were highest for SGFOR and PINUS, followed by GRASS. In contrast, incubation experiments of isolated macro organic matter fractions showed that the recalcitrance of the SOM decreased in another order: PINUS > SGFOR > GRASS. We concluded that physical protection of soil aggregates was the main process determining whole soil C mineralization. Land use changes affected soil organic carbon dynamics in this south Chilean Andisol by altering soil pH and consequently available Al.
Publisher: Copernicus GmbH (provided by DOAJ)
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 1 of 7 found articles
 
   next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands