Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 76 van 146 gevonden artikelen
 
 
  Light effects on the isotopic fractionation of skeletal oxygen and carbon in the cultured zooxanthellate coral, Acropora: implications for coral-growth rates
 
 
Titel: Light effects on the isotopic fractionation of skeletal oxygen and carbon in the cultured zooxanthellate coral, Acropora: implications for coral-growth rates
Auteur: A. Juillet-Leclerc
S. Reynaud
Verschenen in: Biogeosciences discussions
Paginering: Jaargang 6 (2009) nr. 6 pagina's 10243-10277
Jaar: 2009
Inhoud: Skeletal isotopic and metabolic measurements of the branching coral Acropora cultured in constant conditions and subjected to two light intensities were revisited. We individually compared the data recorded at low light (LL) and high light (HL) for 24 colonies, all derived from the same parent colony. Metabolic and isotopic responses to the different light levels were highly variable. High light led to productivity enhancement, reduction of surface extension, doubling of aragonite deposited weight and increased δ18O levels in all nubbins; responses in respiration and δ13C were not clear. The partitioning of the colonies into two groups, one showing a δ13C increase and the other a δ13C decrease with increased light, revealed common behaviors. Samples showing an increase in δ13C were associated with the co-variation of low surface extension and high productivity while samples showing a decrease in δ13C were associated with the co-variation of higher surface extension and limited productivity. This experiment, which allowed for the separation of temperature and light effects on the coral, highlighted the significant light influences on both skeletal δ18O and δ13C. The high scattering of inter-colony δ18O observed at one site could be due to the differing photosynthetic responses of symbiotic algal assemblages. The δ13C responses could also be related to differing algal distributions in different skeletal portions. Our results were compared to observations by Gladfelter on Acropora cervicornis (1982). Both set of results highlight the relationships between coral-growth rates, micro-structures and photosynthetic activity. It appears that extension growth and accretion are two separate growth modes, and accretion is light-enhanced while extension is light-repressed. There are multiple consequences of these findings for paleoclimatic reconstructions involving corals.
Uitgever: Copernicus Publications (provided by DOAJ)
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 76 van 146 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland