Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 31 van 82 gevonden artikelen
 
 
  Efficient Estimation of Normal Population Mean
 
 
Titel: Efficient Estimation of Normal Population Mean
Auteur: Ashok Sahai
M. Raghunadh Acharya
Hydar Ali
Verschenen in: Journal of applied sciences
Paginering: Jaargang 6 (2006) nr. 9 pagina's 1966-1968
Jaar: 2006
Inhoud: In 1964, Searls provided the Minimum Mean Squared Error (MMSE) estimator (1 + σ2/nμ2)-1 <img src="../xml/jas/2006/image1-2k6-1966-1968.gif" width="17" height="15"> in the class of estimators of the type <img src="../xml/jas/2006/image2-2k6-1966-1968.gif" width="17" height="15"> for estimating the mean μ of a normal population with variance σ2. However, as (σ/μ) is seldom known, this MMSE estimator is not very useful, in practice. In 1980, Srivastava, therefore, proposed the correspondingly computable estimator t = <img src="../xml/jas/2006/image1-2k6-1966-1968.gif" width="17" height="15">/(1 + s2/(n<img src="../xml/jas/2006/image4-2k6-1966-1968.gif" width="17" height="15">)) and showed that it is more efficient than the usual estimator <img src="../xml/jas/2006/image1-2k6-1966-1968.gif" width="17" height="15"> whenever σ2/(μσ2) is at least 0.5. Nevertheless, the relevant gain in efficiency would be still unknown as it involves the unknown population parameters μ and σ2. In 1990, Srivastava and Singh provided an UMVU estimate of the Relative Efficiency ratio, E(<<img src="../xml/jas/2006/image3-2k6-1966-1968.gif" width="30" height="16"> )2/E(t - μ)2 to help determine the usefulness of the estimator t over the usual sample mean estimator <img src="../xml/jas/2006/image1-2k6-1966-1968.gif" width="17" height="15"> in practice. In most cases the coefficient of variation of the sample mean estimator , which is more stable than the original variable X and hence, its sample counterpart, could be rather low. For such situations, the present study proposes tø = <img src="../xml/jas/2006/image1-2k6-1966-1968.gif" width="17" height="15">(1 + s2/(n<img src="../xml/jas/2006/image4-2k6-1966-1968.gif" width="17" height="15">)) and studies it on the lines similar to those of the estimator t of Srivastava and Singh. The motivating objective, to improve t in practical situations is amply achieved.
Uitgever: Asian Network for Scientific Information (provided by DOAJ)
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 31 van 82 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland