Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 4 van 23 gevonden artikelen
 
 
  A New Machine Learning based Approach for Tuning Metaheuristics for the Solution of Hard Combinatorial Optimization Problems
 
 
Titel: A New Machine Learning based Approach for Tuning Metaheuristics for the Solution of Hard Combinatorial Optimization Problems
Auteur: M. Zennaki
A. Ech- Cherif
Verschenen in: Journal of applied sciences
Paginering: Jaargang 10 (2010) nr. 18 pagina's 1991-2000
Jaar: 2010
Inhoud: This study deals with the problem of tuning metaheuristics for the solution of hard combinatorial optimization problems using machine learning techniques. Decision rules, learned from a corpus of various solutions of randomly generated instances, are repeatedly used to predict solutions quality for a given instance of the combinatorial problem when solved by the metaheuristic. This predicted solution quality is used to fine tune and guide the metaheuristic to more promising search regions during the course of its execution. Results from extensive experimentation on a wide range of hard combinatorial optimization problems ranging from the knapsack problem to the well known Travelling Salesman Problem (TSP) show a noticeable improvement in the objective function value of the solution found by our approach as well as the execution time compared to plain metaheuristics. However, the process of building the corpus and extracting the classification rule is still time consuming but we think it is worth the effort given the fact that this corpus is built only once and also, can provide quick and quality solutions for a stream of instances of the combinatorial problem.
Uitgever: Asian Network for Scientific Information (provided by DOAJ)
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 4 van 23 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland