Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 60 van 87 gevonden artikelen
 
 
  Partially Supervised Approach in Signal Recognition
 
 
Titel: Partially Supervised Approach in Signal Recognition
Auteur: Catalina COCIANU
Luminita STATE
Doru CONSTANTIN
Corina SARARU
Verschenen in: Informatica economica
Paginering: Jaargang 13 (2009) nr. 3 pagina's 153-164
Jaar: 2009
Inhoud: The paper focuses on the potential of principal directions based approaches in signal classification and recognition. In probabilistic models, the classes are represented in terms of multivariate density functions, and an object coming from a certain class is modeled as a random vector whose repartition has the density function corresponding to this class. In cases when there is no statistical information concerning the set of density functions corresponding to the classes involved in the recognition process, usually estimates based on the information extracted from available data are used instead. In the proposed methodology, the characteristics of a class are given by a set of eigen vectors of the sample covariance matrix. The overall dissimilarity of an object X with a given class C is computed as the disturbance of the structure of C, when X is allotted to C. A series of tests concerning the behavior of the proposed recognition algorithm are reported in the final section of the paper.
Uitgever: Inforec Association (provided by DOAJ)
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 60 van 87 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland