Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 91 van 103 gevonden artikelen
 
 
  The Use of Features Extracted from Noisy Samples for Image Restoration Purposes
 
 
Titel: The Use of Features Extracted from Noisy Samples for Image Restoration Purposes
Auteur: Luminita STATE
Catalina COCIANU
Panayiotis VLAMOS
Verschenen in: Informatica economica
Paginering: Jaargang XI (2007) nr. 1 pagina's 73-78
Jaar: 2007
Inhoud: An important feature of neural networks is the ability they have to learn from their environment, and, through learning to improve performance in some sense. In the following we restrict the development to the problem of feature extracting unsupervised neural networks derived on the base of the biologically motivated Hebbian self-organizing principle which is conjectured to govern the natural neural assemblies and the classical principal component analysis (PCA) method used by statisticians for almost a century for multivariate data analysis and feature extraction. The research work reported in the paper aims to propose a new image reconstruction method based on the features extracted from the noise given by the principal components of the noise covariance matrix.
Uitgever: Inforec Association (provided by DOAJ)
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 91 van 103 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland