Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 9 van 19 gevonden artikelen
 
 
  Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO<sub>2</sub>-isoprene interaction
 
 
Titel: Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO<sub>2</sub>-isoprene interaction
Auteur: A. Arneth
Ü. Niinemets
S. Pressley
J. Bäck
P. Hari
T. Karl
S. Noe
I. C. Prentice
D. Serça
T. Hickler
A. Wolf
B. Smith
Verschenen in: Atmospheric chemistry and physics
Paginering: Jaargang 7 (2007) nr. 1 pagina's 31-53
Jaar: 2007
Inhoud: In recent years evidence has emerged that the amount of isoprene emitted from a leaf is affected by the CO<sub>2</sub> growth environment. Many – though not all – laboratory experiments indicate that emissions increase significantly at below-ambient CO<sub>2</sub> concentrations and decrease when concentrations are raised to above-ambient. A small number of process-based leaf isoprene emission models can reproduce this CO<sub>2</sub> stimulation and inhibition. These models are briefly reviewed, and their performance in standard conditions compared with each other and to an empirical algorithm. One of the models was judged particularly useful for incorporation into a dynamic vegetation model framework, LPJ-GUESS, yielding a tool that allows the interactive effects of climate and increasing CO<sub>2</sub> concentration on vegetation distribution, productivity, and leaf and ecosystem isoprene emissions to be explored. The coupled vegetation dynamics-isoprene model is described and used here in a mode particularly suited for the ecosystem scale, but it can be employed at the global level as well. <br><br> Annual and/or daily isoprene emissions simulated by the model were evaluated against flux measurements (or model estimates that had previously been evaluated with flux data) from a wide range of environments, and agreement between modelled and simulated values was generally good. By using a dynamic vegetation model, effects of canopy composition, disturbance history, or trends in CO<sub>2</sub> concentration can be assessed. We show here for five model test sites that the suggested CO<sub>2</sub>-inhibition of leaf-isoprene metabolism can be large enough to offset increases in emissions due to CO<sub>2</sub>-stimulation of vegetation productivity and leaf area growth. When effects of climate change are considered atop the effects of atmospheric composition the interactions between the relevant processes will become even more complex. The CO<sub>2</sub>-isoprene inhibition may have the potential to significantly dampen the expected steep increase of ecosystem isoprene emission in a future, warmer atmosphere with higher CO<sub>2</sub> levels; this effect raises important questions for projections of future atmospheric chemistry, and its connection to the terrestrial vegetation and carbon cycle.
Uitgever: Copernicus GmbH (provided by DOAJ)
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 9 van 19 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland