Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige   
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 6 van 6 gevonden artikelen
 
 
  Some Data Reduction Methods to Analyze the Dependence with Highly Collinear Variables: A Simulation Study
 
 
Titel: Some Data Reduction Methods to Analyze the Dependence with Highly Collinear Variables: A Simulation Study
Auteur: A. D`Ambra
P. Sarnacchiaro
Verschenen in: Asian journal of mathematics &statistics
Paginering: Jaargang 3 (2010) nr. 2 pagina's 69-81
Jaar: 2010
Inhoud: The dependence relationship between two sets of variables is a subject of interest in statistical field. A frequent obstacle is that several of the explanatory variables will vary in rather similar ways. As a result, their collective power of explanation is considerably less than the sum of their individual powers. This phenomenon, called multicollinearity, is a common problem in regression analysis. The major problem with multicollinearity is that the ordinary least squares coefficients estimators involved in the linear dependencies have large variances. All additional adverse effects are a consequence of them. In statistical literature several methods have been proposed to counter with multicollinearity problem. By a simulation study and considering different case of collinearity among the regressors, in this paper we have compared, using RV coefficient, five statistical methods, alternative to the ordinary least square regression.
Uitgever: Asian Network for Scientific Information (provided by DOAJ)
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 6 van 6 gevonden artikelen
 
<< vorige   
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland