Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 39 of 68 found articles
 
 
  On solutions of a system of rational difference equations
 
 
Title: On solutions of a system of rational difference equations
Author: Yu Yang
Li Chen
Yong-Guo Shi
Appeared in: Acta mathematica Universitatis Comenianae
Paging: Volume LXXX (2011) nr. 1 pages 63-70
Year: 2011
Contents: In this paper we investigate the system of rational differenceequations $$ x_n=frac{a}{y_{n-p}},qquad y_n=frac{by_{n-p}}{x_{n-q}y_{n-q}},qquad n=1,2,ldots,$$where q is a positive integer with p < q, p ot | q, p is an odd number and p <FONT SIZE='3' FACE='Symbol'>³</FONT> 3, both a and b are nonzero real constants and the initial values x-q+1, x-q+2, . . .x0, y-q+1, y-q+2, . . ., y0 are nonzero real numbers. We show all real solutions of the system are eventually periodic with period 2pq (resp. 4pq) when (a/b) q = 1 (resp. (a/b)q = -1), characterize the asymptotic behavior of the solutions when a <FONT SIZE='3' FACE='Symbol'>³</FONT> b, which generalizes Őzban's results of in [Appl. Math. Comput. <b>188</b> (2007), 833-837].
Publisher: Acta Mathematica Universitatis Comenianae (provided by DOAJ)
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 39 of 68 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands