Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 60 of 68 found articles
 
 
  Strong stably finite rings and some extensions
 
 
Title: Strong stably finite rings and some extensions
Author: M. R. Vedadi
Appeared in: Acta mathematica Universitatis Comenianae
Paging: Volume LXXVIII (2009) nr. 1 pages 137-144
Year: 2009
Contents: A ring <i>R</i> is called right strong stably finite (r.ssf) if for all <i>n ></i> 1, injective endomorphisms of <i>R<sup>n</sup><sub>R</sub></i> are essential. If <i>R</i> is an r.ssf ring and <i>eR</i> is an idempotent of <i>R</i> such that <i>eR</i> is a retractable <i>R</i>-module, then <i>eRe</i> is an r.ssf ring. A direct product of rings is an r.ssf ring if and only if each factor is so. R.ssf condition is investigated for formal triangular matrix rings. In particular, if <i>M</i> is a finitely generated module over a commutative ring <i>R</i> such that for all <i>n ></i> 1, <i>M</i><sup>(<i>n</i>)</sup><i><sub>R</sub></i> is co-Hopfian, then egin{smallmatrix} End_R(M) & M\ 0 & R end{smallmatrix} is an r.ssf ring. If <i>X</i> is a right denominator set of regular elements of <i>R</i>, then <i>R</i> is an r.ssf ring if and only if <i>RX</i><sup>–1</sup> is so.
Publisher: Acta Mathematica Universitatis Comenianae (provided by DOAJ)
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 60 of 68 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands