Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 12 van 68 gevonden artikelen
 
 
  Convergence Theorems for Asymptotically Nonexpansive Mappings in Banach Spaces
 
 
Titel: Convergence Theorems for Asymptotically Nonexpansive Mappings in Banach Spaces
Auteur: Yongfu Su
Xiaolong Qin
Meijuan Shang
Verschenen in: Acta mathematica Universitatis Comenianae
Paginering: Jaargang LXXVII (2008) nr. 1 pagina's 31-42
Jaar: 2008
Inhoud: Let <i>E</i> be a uniformly convex Banach space, and let <i>K</i> be a nonempty convex closed subset which is also a nonexpansive retract of <i>E</i>. Let <i>T</i>: <i>K</i> <FONT SIZE='3' FACE='Symbol'>®</FONT> <i>E</i> be an asymptotically nonexpansive mapping with {<i>k<sub>n</sub></i>} <FONT SIZE='3' FACE='Symbol'>Ì</FONT> [1, <FONT SIZE='3' FACE='Symbol'>¥</FONT>) such that (<FONT SIZE='3' FACE='Symbol'>å</FONT> from <i>n</i>=1 to <FONT SIZE='3' FACE='Symbol'>¥</FONT>)(<i>k<sub>n</sub></i> - 1) < <FONT SIZE='3' FACE='Symbol'>¥</FONT> and let <i>F</i>(<i>T</i>) be nonempty, where <i>F</i>(<i>T</i>) denotes the fixed points set of <i>T</i>. Let<FONT SIZE='3' FACE='Symbol'>{a</FONT><i><sub>n</sub></i><FONT SIZE='3' FACE='Symbol'>}</FONT>, <FONT SIZE='3' FACE='Symbol'>{b</FONT><i><sub>n</sub></i><FONT SIZE='3' FACE='Symbol'>}</FONT>,<FONT SIZE='3' FACE='Symbol'>{g</FONT><i><sub>n</sub></i><FONT SIZE='3' FACE='Symbol'>}</FONT>, <FONT SIZE='3' FACE='Symbol'>{a¢</FONT><i><sub>n</sub></i><FONT SIZE='3' FACE='Symbol'>}</FONT>, <FONT SIZE='3' FACE='Symbol'>{b¢</FONT><i><sub>n</sub></i><FONT SIZE='3' FACE='Symbol'>}</FONT>, <FONT SIZE='3' FACE='Symbol'>{g¢</FONT><i><sub>n</sub></i><FONT SIZE='3' FACE='Symbol'>}</FONT>, <FONT SIZE='3' FACE='Symbol'>{a¢¢</FONT><i><sub>n</sub></i><FONT SIZE='3' FACE='Symbol'>}</FONT>, <FONT SIZE='3' FACE='Symbol'>{b¢¢</FONT><i><sub>n</sub></i><FONT SIZE='3' FACE='Symbol'>}</FONT>and <FONT SIZE='3' FACE='Symbol'>{g¢¢</FONT><i><sub>n</sub></i><FONT SIZE='3' FACE='Symbol'>}</FONT>be real sequences in [0, 1] such that <FONT SIZE='3' FACE='Symbol'>a</FONT><i><sub>n</sub></i> +<FONT SIZE='3' FACE='Symbol'>b</FONT><i><sub>n</sub></i> +<FONT SIZE='3' FACE='Symbol'>g</FONT><i><sub>n</sub></i> =<FONT SIZE='3' FACE='Symbol'>a¢</FONT><i><sub>n</sub></i> +<FONT SIZE='3' FACE='Symbol'>b¢</FONT><i><sub>n</sub></i> +<FONT SIZE='3' FACE='Symbol'>g¢</FONT><i><sub>n</sub></i> =<FONT SIZE='3' FACE='Symbol'>a¢¢</FONT><i><sub>n</sub></i> +<FONT SIZE='3' FACE='Symbol'>b¢¢</FONT><i><sub>n</sub></i> +<FONT SIZE='3' FACE='Symbol'>g¢¢</FONT><i><sub>n</sub></i> = 1 and <FONT SIZE='3' FACE='Symbol'> e £ a</FONT><i><sub>n</sub></i>,<FONT SIZE='3' FACE='Symbol'>a¢</FONT><i><sub>n</sub></i>, <FONT SIZE='3' FACE='Symbol'>a¢¢</FONT><i><sub>n</sub></i><FONT SIZE='3' FACE='Symbol'> £ 1 - e</FONT> for all <i>n</i> <FONT SIZE='3' FACE='Symbol'> Î</FONT> <i>N</i> and some <FONT SIZE='3' FACE='Symbol'> e > 0</FONT>, starting with arbitrary <i>x</i><sub>1</sub> <FONT SIZE='3' FACE='Symbol'> Î</FONT> <i>K</i>,define the sequence <FONT SIZE='3' FACE='Symbol'>{ </FONT><i>x<sub>n</sub></i><FONT SIZE='3' FACE='Symbol'>}</FONT> by setting <br> <i>z<sub>n</sub> = P</i>(<FONT SIZE='3' FACE='Symbol'>a¢¢</FONT><i><sub>n</sub></i><i>T</i>(<i>PT</i>)<sup><i>n</i>-1</sup><i>x<sub>n</sub></i>+ <FONT SIZE='3' FACE='Symbol'>b¢¢</FONT><i><sub>n</sub></i><i>x<sub>n</sub></i>+ <FONT SIZE='3' FACE='Symbol'>g¢¢</FONT><i><sub>n</sub></i><i>w<sub>n</sub></i>),<br> <i>y<sub>n</sub> =P</i>(<FONT SIZE='3' FACE='Symbol'>a¢</FONT><i><sub>n</sub></i><i>T</i>(<i>PT</i>)<sup><i>n</i>-1</sup><i>z<sub>n</sub></i>+ <FONT SIZE='3' FACE='Symbol'>b¢</FONT><i><sub>n</sub></i><i>x<sub>n</sub></i>+ <FONT SIZE='3' FACE='Symbol'>g¢</FONT><i><sub>n</sub></i><i>v<sub>n</sub></i>),<br> <i>x</i><sub><i>n</i>+1</sub> =<i>P</i>(<FONT SIZE='3' FACE='Symbol'>a</FONT><i><sub>n</sub></i><i>T</i>(<i>PT</i>)<sup><i>n</i>-1</sup><i>y<sub>n</sub></i>+ <FONT SIZE='3' FACE='Symbol'>b</FONT><i><sub>n</sub></i><i>x<sub>n</sub></i>+ <FONT SIZE='3' FACE='Symbol'>g</FONT><i><sub>n</sub></i><i>u<sub>n</sub></i>),<br><br>with the restrictions (<FONT SIZE='3' FACE='Symbol'>å</FONT> from <i>n</i>=1 to <FONT SIZE='3' FACE='Symbol'>¥</FONT>) (<FONT SIZE='3' FACE='Symbol'>g</FONT><i><sub>n</sub></i>) < <FONT SIZE='4' FACE='Symbol'>¥</FONT>,(<FONT SIZE='3' FACE='Symbol'>å</FONT> from <i>n</i>=1 to <FONT SIZE='3' FACE='Symbol'>¥</FONT>) (<FONT SIZE='3' FACE='Symbol'>g¢</FONT><i><sub>n</sub></i>) < <FONT SIZE='4' FACE='Symbol'>¥</FONT> and (<FONT SIZE='3' FACE='Symbol'>å</FONT> from <i>n</i>=1 to <FONT SIZE='3' FACE='Symbol'>¥</FONT>) (<FONT SIZE='3' FACE='Symbol'>g¢¢</FONT><i><sub>n</sub></i>) < <FONT SIZE='4' FACE='Symbol'>¥</FONT> where <FONT SIZE='3' FACE='Symbol'>{ </FONT><i>w<sub>n</sub></i><FONT SIZE='3' FACE='Symbol'>}</FONT> , <FONT SIZE='3' FACE='Symbol'>{ </FONT><i>v<sub>n</sub></i><FONT SIZE='3' FACE='Symbol'>}</FONT> and <FONT SIZE='3' FACE='Symbol'>{ </FONT><i>u<sub>n</sub></i><FONT SIZE='3' FACE='Symbol'>}</FONT> are bounded sequences in <i>K</i>. <br> (i) If <i>E</i> is realuniformly convex Banach space satisfying <i>Opial's</i> condition, then weak convergence of <FONT SIZE='3' FACE='Symbol'>{ </FONT><i>x<sub>n</sub></i><FONT SIZE='3' FACE='Symbol'>}</FONT> to some <i>p</i> <FONT SIZE='3' FACE='Symbol'>Î </FONT> <i>F</i>(<i>T</i>) is obtained; <br> (ii) If <i>T</i> satisfies condition (A), then <FONT SIZE='3' FACE='Symbol'>{ </FONT><i>x<sub>n</sub></i><FONT SIZE='3' FACE='Symbol'>}</FONT> convergence strongly to some <i>p</i> <FONT SIZE='3' FACE='Symbol'>Î </FONT> <i>F</i>(<i>T</i>).
Uitgever: Acta Mathematica Universitatis Comenianae, Institute of Applied Mathematics (provided by DOAJ)
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 12 van 68 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland