Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 3 van 28 gevonden artikelen
 
 
  Arithmetic sequence as a bridge between conceptual fields
 
 
Titel: Arithmetic sequence as a bridge between conceptual fields
Auteur: Zazkis, Rina
Liljedahl, Peter
Verschenen in: Canadian journal of science, mathematics and technology education
Paginering: Jaargang 2 (2002) nr. 1 pagina's 91-118
Jaar: 2002-01
Inhoud: Arithmetic sequence is used in this study as a means to explore pre-service elementary school teachers' connections between additive and multiplicative structures as well as several concepts related to introductory number theory. Vergnaud's theory of conceptual fields is used and refined to analyze students' attempts to test membership of given numbers and to generate elements that are members of a given infinite arithmetic sequence. Our results indicate that participants made a strong distinction between two types of arithmetic sequences: sequences of multiples (e.g., 7, 14, 21, 28,…) and sequences of 'non-multiples,' (e.g., 8, 15, 22, 29,…). Students were more successful in recognizing the underlying structure of elements in sequences of multiples, whereas for sequences of non-multiples students often preferred algebraic computations and were mostly unaware of the invariant structure linking the two types. We examine the development of students' schemes as they identify differences and similarities in the situations presented to them.
Uitgever: Routledge
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 3 van 28 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland