Digital Library
Close Browse articles from a journal
 
   next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 1 of 12 found articles
 
 
  A binary screening assay for pro-oestrogens in food: metabolic activation using hepatic microsomes and detection with oestrogen sensitive recombinant yeast cells
 
 
Title: A binary screening assay for pro-oestrogens in food: metabolic activation using hepatic microsomes and detection with oestrogen sensitive recombinant yeast cells
Author: Coldham, N. G.
Horton, R.
Byford, M. F.
Sauer, M. J.
Appeared in: Food additives and contaminants. Pt. A, Chemistry, analysis, control, exposure & risk assessment
Paging: Volume 19 (2002) nr. 12 pages 1138-1147
Year: 2002-12-01
Contents: An assay, employing microsomes prepared from rat liver and a recombinant cell bioassay (RCBA) expressing the human oestrogen receptor ( α) linked to a reporter gene, was evaluated for the detection of pro-oestrogens in food using methoxychlor and mestranol as model compounds. Bio-activation of the hop phytoestrogen isoxanthohumol to the potent oestrogen 8-prenylnaringenin was also investigated. The oestrogenic potency values for reference standards determined with the RCBA (17 β-oestradiol = 100%) were: methoxychlor 0.0025%, mestranol 1.3%, isoxanthohumol 0.001%, and for their potential respective metabolites were: bishydroxymethoxychlor 0.015%, 17 α-ethynyl oestradiol 69% and 8-prenylnaringenin 0.4%. Incubation of methoxychlor and mestranol (10 μM) with microsomes prepared from the liver of rats treated with Aroclor 1254 significantly increased ( p < 0.001) their oestrogenic potency from 0.0021 and 2.4% to 0.015 and 8.3%, respectively. In contrast, the potency of the hop phytoestrogen isoxanthohumol was unchanged. Metabolites were identified by UV-HPLC-MS/MS as monohydroxy methoxychlor and HPTE from methoxychlor, and the major metabolite of mestranol was 17 α-ethynyl oestradiol. There was no evidence for the metabolism of isoxanthohumol. Mestranol was also activated by microsomes induced with saline (control), β-napthoflavone, 3-methylcholantherene, isoniazid or pregnenolone-16 α-carbonitrile, but not phenobarbitone. These studies demonstrate the principle for use of a binary assay system for the detection of pro-oestrogens and indicate the potential value for risk assessment of endocrine disrupting chemicals.
Publisher: Taylor & Francis
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 1 of 12 found articles
 
   next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands