Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige   
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 7 van 7 gevonden artikelen
 
 
  Tomography and Simulation of Microstructure Evolution of a Closed-Cell Polymer Foam in Compression
 
 
Titel: Tomography and Simulation of Microstructure Evolution of a Closed-Cell Polymer Foam in Compression
Auteur: Daphalapurkar, N. P.
Hanan, J. C.
Phelps, N. B.
Bale, H.
Lu, H.
Verschenen in: Mechanics of advanced materials & structures
Paginering: Jaargang 15 (2008) nr. 8 pagina's 594-611
Jaar: 2008-11
Inhoud: Closed-cell foams in compression exhibit complex deformation characteristics that remain incompletely understood. In this paper the microstructural evolution of closed-cell polymethacrylimide foam was simulated in compression undergoing elastic, compaction, and densification stages. The three-dimensional microstructure of the foam is determined using Micro-Computed Tomography (μ-CT), and is converted to material points for simulations using the material point method (MPM). The properties of the cell-walls are determined from nanoindentation on the wall of the foam. MPM simulations captured the three stages of deformations in foam compression. Features of the microstructures from simulations are compared qualitatively with the in-situ observations of the foam under compression using μ-CT. The stress-strain curve simulated from MPM compares reasonably with the experimental results. Based on the results from μ-CT and MPM simulations, it was found that elastic buckling of cell-walls occurs even in the elastic regime of compression. Within the elastic region, less than 35% of the cell-wall material carries the majority of the compressive load. In the experiment, a shear band was observed as a result of collapse of cells in a weak zone. From this collapsed weak zone a compaction (collapse) wave was seen traveling which eventually lead to the collapse of the entire foam cell-structure. Overall, this methodology will allow prediction of material properties for microstructures driving the optimization of processing and performance in foam materials.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 7 van 7 gevonden artikelen
 
<< vorige   
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland