Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 3 van 27 gevonden artikelen
 
 
  Assessment of Offshore New Jersey Sources of Beach Replenishment Sand by Diversified Application of Geologic and Geophysical Methods
 
 
Titel: Assessment of Offshore New Jersey Sources of Beach Replenishment Sand by Diversified Application of Geologic and Geophysical Methods
Auteur: Waldner, J. S.
Hall, D. W.
Uptegrove, Jane
Sheridan, R. E.
Ashley, G. M.
Esker, Dominic
Verschenen in: Marine georesources & geotechnology
Paginering: Jaargang 17 (1999) nr. 2-3 pagina's 139-140
Jaar: 1999-01-01
Inhoud: Beach replenishment serves the dual purpose of maintaining a source of tourism and recreation while protecting life and property. For New Jersey, sources for beach sand supply are increasingly found offshore. To meet present and future needs, geologic and geophysical techniques can be used to improve the identification, volume estimation, and determination of suitability, thereby making the mining and manag ing of this resource more effective. Current research has improved both data collection and interpretation of seismic surveys and vibracore analysis for projects investigating sand ridges offshore of New Jersey. The New Jersey Geological Survey in cooperation with Rutgers University is evaluating the capabilities of digital seismic data (in addition to analog data) to analyze sand ridges. The printing density of analog systems limits the dynamic range to about 24 dB. Digital acquisition systems with dynamic ranges above 100 dB can permit enhanced seismic profiles by trace static correction, deconvolution, automatic gain scaling, horizontal stacking and digital filtering. Problems common to analog data, such as wave-motion effects of surface sources, water-bottom reverberation, and bubble-pulse-width can be addressed by processing. More than 160 line miles of digital high-resolution continuous profiling seismic data have been collected at sand ridges off Avalon, Beach Haven, and Barnegat Inlet. Digital multichannel data collection has recently been employed to map sand resources within the Port of New York New Jersey expanded dredge-spoil site located 3 mi offshore of Sandy Hook, New Jersey. Multichannel data processing can reduce multiples, improve signal-to-noise calculations, enable source deconvolution, and generate sediment acoustic velocities and acoustic impedance analysis. Synthetic seismograms based on empirical relationships among grain size distribution, density, and velocity from vibracores are used to calculate proxy values for density and velocity. The seismograms are then correlated to the digital seismic profile to confirm reflected events. They are particularly useful where individual reflection events cannot be detected but a waveform generated by several thin lithologic units can be recognized. Progress in application of geologic and geophysical methods provides advan tages in detailed sediment analysis and volumetric estimation of offshore sand ridges. New techniques for current and ongoing beach replenishment projects not only expand our knowledge of the geologic processes involved in sand ridge origin and development, but also improve our assessment of these valuable resources. These reconnaissance studies provide extensive data to the engineer regarding the suitability and quantity of sand and can optimize placement and analysis of vibracore samples.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 3 van 27 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland