Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 15 van 27 gevonden artikelen
 
 
  Offshore Atlas Project: Methodology and Results
 
 
Titel: Offshore Atlas Project: Methodology and Results
Auteur: Nixon, Lesley D.
Bascle, Barbara J.
Marin, David A.
Verschenen in: Marine georesources & geotechnology
Paginering: Jaargang 17 (1999) nr. 2-3 pagina's 211-212
Jaar: 1999-01-01
Inhoud: The Offshore Atlas Project (OAP) grouped 4,325 Miocene and older and 5,622 Pliocene and Pleistocene productive sands in the Gulf of Mexico into 91 chronostratigraphic hydrocarbon plays to aid the oil and gas industry with regional hydrocarbon exploration and field development. OAP has produced a two-volume atlas series entitled Atlas of Northern Gulf of Mexico Gas and Oil Reservoirs. Volume 1 comprises Miocene and older reservoirs, while volume 2 comprises Pliocene and Pleistocene reservoirs. Chronozones (Reed et al., 1987) were used to define geologic ages in the Gulf of Mexico. A chronozone is a time-stratigraphic unit defined by a particular benthic foraminifera biostratigraphic zone. The 26 chronozones identified by Reed et al. (1987) were further grouped into 14 Cenozoic and 2 Mesozoic chronozones for OAP. A composite type log (CTL), which shows the chronostratigraphic relationship of all productive sands in a field, was constructed for each of the 876 proved federal fields in the Gulf of Mexico. Depositional facies (retrogradational, aggradational, progradational, and submarine fan)were next identified on each CTL. The four facies were identified primarily according to characteristic SP-curve shapes, paleoecozones, and sand content. The chronozones and depositional facies identified on each CTL were then correlated among fields across the Gulf of Mexico. All productive sands correlated to the same chronozone and depositional facies were then identified as a unique play. Both federal and state fields in the Gulf of Mexico contain original proved reserves (sum of cumulative production and remaining proved reserves) estimated at 12.481 Bbbl of oil and condensate and 156.466 Tcf of gas (40.322 Bboe [sum of liquids and energy equivalent gas]). Of this, 9.943 Bbbl of oil and condensate and 122.263 Tcf of gas (31.698 Bboe) have been produced. Miocene plays contain the most total original proved reserves with 41.9 %, followed by Pleistocene plays (36.2 %), Pliocene plays (18.6 %), Mesozoic plays (2.9 %), and Oligocene plays (0.4 %). Miocene plays have produced the largest amount of total hydrocarbons, as well, at 43.5 % followed by Pleistocene plays (36.5 %), Pliocene plays (19.1 %), Oligocene plays (0.5 %), and Mesozoic plays (0.4 %). Just over two-thirds of the Gulf of Mexico's total original proved reserves are contained in progradational facies (67.4 %),with the remainder comprising submarine-fan facies (18.5 %), aggradational facies (9.9 %), retrogradationalfacies (2.4 %), combination facies (1.7 %), and caprock and reef reservoirs (0.1 %). Total cumulative production from the different facies closely mimics the distribution of original proved reserves. Of the 91 plays, the lower Pleistocene progradational play (LPL P.1) contains the most original proved gas reserves (10.5 %) and has produced the most gas (11.4 %). However, the upper upper Miocene eastern progradational play (UM3 P.1B) contains the most original proved oil and condensate reserves (18.9 %) and has produced the most oil and condensate (21.4%). Several technical studies resulting from OAP have been published. Hunt and Burgess (1995) described the distribution of OAP plays deposited by the ancestral Mississippi River delta system in the north-central Gulf of Mexico over the past 24 million years. The lower Miocene plays are restricted to the westernmost portion of the Louisiana shelf. In the late middle Miocene, the depocenter migrated east of the present-day Mississippi River delta. During the late upper Miocene, the depocenter began migrating back to the west and prograded basinward, and it continued to do so throughout the Pliocene and Pleistocene. Lore and Batchelder (1995) discussed how OAP plays can be used to find exploration targets and assess undiscovered resources. As an exploration tool, OAP play maps can be used to identify conceptual submarine-fan plays downdip of established shallow water producing facies, and to identify wells where a known producing facies or chronozone has not yet been reached. As an assessment tool, the extensive data sets associated with each OAP play can be used to infer statistically the size of undiscovered resources in a play to determine if exploration in that play is economically justifiable. Lore et al. (1995) estimated the amount of undiscovered conventionally recoverable resources in the Gulf of Mexico, basing their assessment on previous work performed for OAP. Mean level estimates show that, by far, submarine-fan plays have the greatest potential for additional oil and gas in the Gulf of Mexico, with 75.1 % and 70.4 % of the total oil and gas resources, respectively. Mean level estimates for the 13 OAP Miocene, Pliocene, and Pleistocene chronozones show that upper Pleistocene plays have the most oil resource potential (24.3 %), while lower Pleistocene plays have the most gas resource potential (20.6 %).
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 15 van 27 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland