Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 6 of 9 found articles
 
 
  Permanents of convex combinations of doubly stochastic matrices
 
 
Title: Permanents of convex combinations of doubly stochastic matrices
Author: Foregger, Thomas H.
Appeared in: Linear & multilinear algebra
Paging: Volume 23 (1988) nr. 1 pages 79-90
Year: 1988-03
Contents: Let S be a 4 × 4 doubly stochastic matrix and t0 < t ≥ 4/3, where t0 is the unique real root of 106t3 - 418t2 + 465t - 100. We prove that per(tJ4 + (1 - t)S) ≤ per(S) with equality if and only if S = J4. This confirms for n = 4 a conjecture of K. Lih and E. T. H. Wang that for [image omitted] . We also show that another conjecture of K. Lih and E. T. H. Wang, per(tjn + (1 - t) S) ≤ t per(Jn) + (1 - t) per(S) for t ε [1/2, 1] is true for n = 4 and t ε [t2, 1], where t2 is the unique real root of 106t3 - 418t2 + 465t - 153. Note that t2 is about 0.6216986477375. Finally, we exhibit a set of 4 × 4 doubly stochastic matrices for which per(tJ4 + (1 - t)A) is a strictly decreasing function of t on (0,4/3] whenever A is a member of the set. This answers a question raised by H. Minc.
Publisher: Taylor & Francis
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 6 of 9 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands