Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 5 van 7 gevonden artikelen
 
 
  On computing the polynomial invariants of a finite group
 
 
Titel: On computing the polynomial invariants of a finite group
Auteur: Gay, David
Ascher, Edgar
Verschenen in: Linear & multilinear algebra
Paginering: Jaargang 18 (1985) nr. 2 pagina's 91-116
Jaar: 1985-10
Inhoud: Let p be a real representation of a finite group G as n×n matrices and P(p)G the ring of polynomial invariants associated with p(G) One way to describe P(p)G is as a direct sum [image omitted] . Given that such a good polynomial basis is known for P(p)G. we will show how to construct good polynomial bases for other polynomial rings associated with P(p)G: P(p)Hwhere H is a subgroup of G[image omitted]  where σ is another real representation of G, and [image omitted] . We will make sense of the notion of good polynomial basis for relative invariants and show how to construct the same for the representation [image omitted]  is the representation gotten from ρ by twisting it by the linear representation [image omitted] . If P(ρ) is the ring of all polynomials associated with ρ(G), then those features of the structure of P(ρ) as a graded G-algebra -needed for the constructions above - will also be developed by extending classical results about the ideal in P(ρ) generated by the invariants, about G-harmonic polynomials and about polarization.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 5 van 7 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland