Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
   volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 1 van 3 gevonden artikelen
 
 
  Applying machine learning to programming by demonstration
 
 
Titel: Applying machine learning to programming by demonstration
Auteur: Paynter, Gordon W.
Witten, Ian H.
Verschenen in: Journal of experimental & theoretical artificial intelligence
Paginering: Jaargang 16 (2004) nr. 3 pagina's 161-188
Jaar: 2004-07
Inhoud: 'Familiar' is a tool that helps end-users automate iterative tasks in their applications by showing examples of what they want to do. It observes the user's actions, predicts what they will do next, and then offers to complete their task. Familiar learns in two ways. First, it creates a model, based on data gathered from training tasks, that selects the best prediction from among several candidates. Experiments show that decision trees outperform heuristic methods, and can be further improved by incrementally updating the classifier at task time. Second, it uses decision stumps inferred from analogous examples in the event trace to predict the parameters of conditional rules. Because data is sparse—for most users balk at giving more than a few training examples—permutation tests are used to calculate the statistical significance of each stump, successfully eliminating bias towards attributes with many different values.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 1 van 3 gevonden artikelen
 
   volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland