Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige   
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 5 van 5 gevonden artikelen
 
 
  Time-series analysis with neural networks and ARIMA-neural network hybrids
 
 
Titel: Time-series analysis with neural networks and ARIMA-neural network hybrids
Auteur: Hansen, James V.
Nelson, Ray D.
Verschenen in: Journal of experimental & theoretical artificial intelligence
Paginering: Jaargang 15 (2003) nr. 3 pagina's 315-330
Jaar: 2003-07
Inhoud: Time-series analysis is important to a wide range of disciplines transcending both the physical and social sciences. Statistical models have sound theoretical bases and have been successfully used in a number of problem domains. More recently, machine-learning models such as neural networks have been suggested as offering potential for time-series analysis. Results of neural network empirical testing have thus far been mixed. This paper proposes melding useful parameters from the statistical ARIMA model with neural networks of two types: multilevel perceptrons (MLPs) and radial basis functions (RBFs). Tests are run on a range of time-series problems that exhibit many common patterns encountered by analysts. The results suggest that hybrids of the type proposed may yield better outcomes than either model by itself.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 5 van 5 gevonden artikelen
 
<< vorige   
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland