Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 2 van 5 gevonden artikelen
 
 
  Causal reversibility in Bayesian networks
 
 
Titel: Causal reversibility in Bayesian networks
Auteur: Druzdzel, Marek J.
Van Leijen, Hans
Verschenen in: Journal of experimental & theoretical artificial intelligence
Paginering: Jaargang 13 (2001) nr. 1 pagina's 45-62
Jaar: 2001-01-01
Inhoud: Causal manipulation theorems proposed by Spirtes et al. and Pearl in the context of directed probabilistic graphs, such as Bayesian networks, offer a simple and theoretically sound formalism for predicting the effect of manipulation of a system from its causal model. While the theorems are applicable to a wide variety of equilibrium causal models, they do not address the issue of reversible causal mechanisms, i.e. mechanisms that are capable of working in several directions, depending on which of their variables are manipulated exogenously. An example involving reversible causal mechanisms is the power train of a car: normally the engine moves the transmission which, in turn, moves the wheels; when the car goes down the hill, however, the driver may want to use the power train to slow down the car, i.e. let the wheels move the transmission, which then moves the engine. Some probabilistic systems can also be symmetric and reversible. For example, the noise introduced by a noisy communication channel does not usually depend on the direction of data transmission. In this paper, we investigate whether Bayesian networks are capable of representing reversible causal mechanisms. Building on the result of Druzdzel and Simon (1993), which shows that conditional probability tables in Bayesian networks can be viewed as descriptions of causal mechanisms, we study the conditions under which a conditional probability table can represent a reversible causal mechanism. Our analysis shows that conditional probability tables are capable of modelling reversible causal mechanisms but only when they fulfill the condition of soundness, which is equivalent to injectivity in equations. While this is a rather strong condition, there exist systems where our finding and the resulting framework are directly applicable.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 2 van 5 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland