Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige   
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 5 van 5 gevonden artikelen
 
 
  Using communication to reduce locality in distributed multiagent learning
 
 
Titel: Using communication to reduce locality in distributed multiagent learning
Auteur: Mataric, Maja J.
Verschenen in: Journal of experimental & theoretical artificial intelligence
Paginering: Jaargang 10 (1998) nr. 3 pagina's 357-369
Jaar: 1998-07-01
Inhoud: . This paper attempts to bridge the fields of machine learning, robotics, and distributed AI. It discusses the use of communication in reducing the undesirable effects of locality in fully distributed multi-agent systems with multiple agents robots learning in parallel while interacting with each other. Two key problems, hidden state and credit assignment, are addressed by applying local undirected broadcast communication in a dual role: as sensing and as reinforcement. The methodology is demonstrated on two multi-robot learning experiments. The first describes learning a tightly-coupled coordination task with two robots, the second a loosely-coupled task with four robots learning social rules. Communication is used to (1) share sensory data to overcome hidden state and (2) share reinforcement to overcome the credit assignment problem between the agents and bridge the gap between local individual and global group pay-off.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 5 van 5 gevonden artikelen
 
<< vorige   
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland