Thirty-six plant species of different agronomic importance, size, dry matter production, and tolerance to heavy metals were evaluated for Cr(III) and Cr(VI) uptake and accumulation as influenced by rate, form, source, and chelate application to a Cr-contaminated soil. There was a significant difference in the degree of tolerance, uptake, and accumulation of Cr among plant species. Sunflower (Helianthus annuus) was the least tolerant to Cr, and Bermudagrass (Cynodon dactylon) and switchgrass (Panicum virgatum) were the most tolerant. Indian mustard (Brassica juncea, cv 426308) and sunflower accumulated more Cr than other agricultural plant species. There was no inhibition of growth and little Cr accumulation in the presence of Cr(III) in soil, but most of the plant species that were treated with Cr(VI) hyperaccumulated Cr and died. EDTA chelate added to soil enhanced Cr(III) accumulation in some plants. The phytoremediation potential of the plant species tested was limited because Cr was accumulated in the plant roots and a high concentration in the shoots was toxic to plants. The difference in behavior between Cr(III) and Cr(VI) and their importance in soil and environment contamination should be the basis for remediation strategies.