Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 4 of 9 found articles
 
 
  Improving the efficacy of nuclear polyhedrosis virus and Bacillus thuringiensis against Helicoverpa spp. with ultra-violet light protected petroleum spray oils on cotton crops in Australia
 
 
Title: Improving the efficacy of nuclear polyhedrosis virus and Bacillus thuringiensis against Helicoverpa spp. with ultra-violet light protected petroleum spray oils on cotton crops in Australia
Author: Mensah, RK
Liang, W.
Gibb, D.
Coates, R.
Johnson, D.
Appeared in: International journal of pest management
Paging: Volume 51 (2005) nr. 2 pages 101-109
Year: 2005-04
Contents: Nuclear polyhedrosis virus (NPV) and Bacillus thuringiensis (Bt) are the most commonly used biopesticides for the control of Helicoverpa spp. larvae on cotton crops in Australia. The performance of NPV and Bt against Helicoverpa spp. larvae on cotton crops, is inconsistent and at times totally unsatisfactory against high densities of Helicoverpa spp. larvae. We determined the effect of mixing petroleum spray oils, containing ultra-violet light absorbing compounds, with NPV and Bt for efficacy against Helicoverpa spp. larvae, levels of cotton plant damage, and persistence of efficacy. The study showed that the efficacy and persistence of NPV and Bt were increased when mixed with petroleum spray oil (PSO - Canopy®) at the rate of 2% (v/v). In the field experiments, mixing NPV with 1 and 2% (v/v) PSO, increased Helicoverpa spp. mortality from 25.9 to 31.5 and 44.8%, respectively. Similarly, the mortality caused by Bt, when mixed with 1 and 2% (v/v) PSO, was increased from 31.5 to 36.0 and 48.2%, respectively. In addition, 1 and 2% PSO mixtures with NPV increased persistence of efficacy from 1.1 to 1.6 and 2.5 days, respectively, whilst persistence of Bt was increased from 1.5 to 1.8 and 2.6 days, respectively. In another study using potted cotton plants, in which the plants were left outdoors throughout the study, the average NPV induced mortality of first instar Helicoverpa larvae was increased from 20.9% to 35.9 and 43.4% by 1 and 2% (v/v) PSO, respectively. Persistence of NPV efficacy was enhanced by 2 and 3.1 times by 1 and 2% (v/v) PSO, respectively. Similarly, Bt induced mortality of Helicoverpa larvae was increased by 1 and 2% PSO from 68.1 to 78.8 and 83.2%, respectively, and the persistence of Bt efficacy was enhanced 1.3 - 2.0 times, respectively. In a mesh house study, young cotton plants, treated with a PSO/biopesticide mixture, suffered less leaf damage than cotton plants treated with the biopesticides alone. In conclusion, the results of this study showed synergies from the combined use of UV protected PSO and NPV or Bt, against Helicoverpa spp. larvae on cotton. Such a biopesticide-PSO combinations could be a useful tool for IPM program in cotton.
Publisher: Taylor & Francis
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 4 of 9 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands