Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 2 of 7 found articles
 
 
  Adaptive output feedback control of a class of multi-input multi-output systems using neural networks
 
 
Title: Adaptive output feedback control of a class of multi-input multi-output systems using neural networks
Author: Hovakimyan, Naira
Calise, Anthony J.
Kim, Nakwan
Appeared in: International journal of control
Paging: Volume 77 (2004) nr. 15 pages 1318-1329
Year: 2004-10-15
Contents: For a class of uncertain multi-input multi-output non-linear systems an adaptive output feedback control methodology is developed using linearly parameterized neural networks. The neural network operates over a tapped delay line of memory units, comprised of system input/output signals. The adaptive laws for neural network parameters are written in terms of a linear observer of the nominal system's error dynamics. Ultimate boundedness of the error signals is shown through Lyapunov's direct method. Simulations illustrate the theoretical results.
Publisher: Taylor & Francis
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 2 of 7 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands