Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 16 van 19 gevonden artikelen
 
 
  On the Application of Two Symmetric Gauss Legendre Quadrature Rules for Composite Numerical Integration Over a Tetrahedral Region
 
 
Titel: On the Application of Two Symmetric Gauss Legendre Quadrature Rules for Composite Numerical Integration Over a Tetrahedral Region
Auteur: Rathod, H. T.
Venkatesudu, B.
Nagaraja, K. V.
Verschenen in: International journal for computational methods in engineering science and mechanics
Paginering: Jaargang 7 (2006) nr. 6 pagina's 445-459
Jaar: 2006-12-01
Inhoud: In this paper, we first present a Gauss Legendre Quadrature rule for the evaluation of I = ∫∫∫T f(x,y,z) dxdydz, where f(x,y,z) is an analytic function in x,y,z and T is the standard tetrahedral region: {(x,y,z) |0 ≤ x,y,z ≤ 1,x + y + z ≤ 1} in three space (x,y,z). We then use the transformations x = x(ξ,η,ζ), y = y (ξ,η,ζ) and z = z(ξ,η,ζ) to change the integral I into an equivalent integral I = ∫- 11∫- 11∫- 11f(x(ξ,η,ζ),y(ξ,η,ζ),z(ξ,η,ζ)) [image omitted] dξ dη dζ over the standard 2-cube in (ξ,η,ζ) space: {(ξ,η,ζ) | - 1 ≤ ξ,η,ζ ≤ 1}. We then apply the one-dimensional Gauss Legendre Quadrature rule in ξ,η and ζ variables to arrive at an efficient quadrature rule with new weight coefficients and new sampling points. Then a second Gauss Legendre Quadrature rule of composite type is obtained. This rule is derived by discretising the tetrahedral region T into four new tetrahedra Tic (i = 1,2,3,4) of equal size, which are obtained by joining centroid of T, c = (1/4, 1/4, 1/4) to the four vertices of T. Use of the affine transformations defined over each Tic and the linearity property of integrals leads to the result:  [image omitted] where  [image omitted] refer to the affine transformations, which map each Tic into the standard tetrahedral region T. We then write  [image omitted] and a composite rule of integration is thus obtained. We next propose the discretisation of the standard tetrahedral region T into p3 tetrahedra Ti (i = 1 (1) p3), each of which has volume equal to 1/(6p3) units. We have again shown that the use of affine transformations over each Ti and the use of linearity property of integrals leads to the result:  [image omitted] where  [image omitted] refer to the affine transformations, which map each Ti in (x(α,p), y(α,p), z(α,p)) space into a standard tetrahedron T in the (X,Y,Z) space. We can now apply the two rules earlier derived to the integral ∫∫∫T H(X,Y,Z)dXdYdZ; this amounts to the application of composite numerical integration of T into p3 and 4p3 tetrahedra of equal volume. We have demonstrated this aspect by applying the above composite integration method to some typical triple integrals.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 16 van 19 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland