Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 81 of 158 found articles
 
 
  Issues in Ecological Risk Assessment of Inorganic Metals and Metalloids
 
 
Title: Issues in Ecological Risk Assessment of Inorganic Metals and Metalloids
Author: Chapman, Peter M.
Wang, Feiyue
Appeared in: Human and ecological risk assessment
Paging: Volume 6 (2000) nr. 6 pages 965-988
Year: 2000-11-01
Contents: Ecological risk assessment (ERA) is a process that evaluates the potential for adverse ecological effects occurring as a result of exposure to contaminants or other stressors. ERA begins with hazard identification/problem formulation, progresses to effects and exposure assessment, and finishes with risk characterization (an estimate of the incidence and severity of any adverse effects likely to occur). Risk management initially sets the boundaries of the ERA and then uses its results for decision-making. Key information required for an ERA includes: the emissions, pathways and rates of movement of contaminants in the environment; and, information on the relationship between contaminant concentrations and the incidence and (or) severity of adverse effects. Because of specific properties and characteristics of metals in general and of certain metals in particular, a generalized ERA process applicable to organic substances is inappropriate for metals. First, metals are naturally occurring and can arise, sometimes in very high concentrations, from non-anthropogenic sources; organisms can and do adapt to a wide range of metal concentrations. Second, certain metals (e.g., copper, zinc) are essential for biotic health, which means there is an effect threshold for both deficiency and excess, and that standard body burden indices such as bioaccumulation factors (BCFs) can be misleading. Third, metals can occur in the environment in a variety of forms that are more or less available to biota but adverse biological effects can only occur if metals are or may become bioavailable. Fourth, whereas the bioavailability and hence the possibility of toxicity of persistent organic substances are mainly dependent on their intrinsic properties (i.e., lipophilicity), those of metals are generally controlled by external environmental conditions. Examples include pH and ligands, which affect the metal speciation and coexisting cations (e.g., H+, Ca2+) which compete with the metal ions. ERAs involving metals must include the above four major considerations; other considerations vary depending on whether the ERA is for a site, a region, or is global in scope.
Publisher: Taylor & Francis
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 81 of 158 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands